On the second smallest prime non-residue
نویسنده
چکیده
Let χ be a non-principal Dirichlet character modulo a prime p. Let q1 < q2 denote the two smallest prime non-residues of χ. We give explicit upper bounds on q2 that improve upon all known results. We also provide a good upper estimate on the product q1q2 which has an upcoming application to the study of norm-Euclidean Galois fields.
منابع مشابه
The Smallest Prime That Does Not Split Completely in a Number Field
We study the problem of bounding the least prime that does not split completely in a number field. This is a generalization of the classic problem of bounding the least quadratic non-residue. Here, we present two distinct approaches to this problem. The first is by studying the behavior of the Dedekind zeta function of the number field near 1, and the second by relating the problem to questions...
متن کاملPower Residues and Nonresidues in Arithmetic Progressions
Let A: be an integer > 2 andp a prime such that vk(p) = (k,p — 1) > 1. Let bn + c(n = 0,1,. ..;b > 2,1 < c < b, (b,p) — (c,p) = 1) be an arithmetic progression. We denote the smallest kth power nonresidue in the progression bn + c by g(p,k,b,c), the smallest quadratic residue in the progression bn + c by r2(p,b,c), and the nth smallest prime kth power nonresidue by g„(p,k), n = 0, 1, 2,_ If C(p...
متن کاملJu l 2 00 6 Density of non - residues in short intervals
We show that for any fixed ε > 0, there are numbers δ > 0 and p 0 2 with the following property: for every prime p p 0 , there is an integer p δ < N p 1/(4 √ e)+ε such that the sequence 1, 2,. .. , N contains at least δN quadratic non-residues modulo p. We then apply this result to obtain a new estimate on the smallest quadratic nonresidue in a Beatty sequence.
متن کاملOn the Exponent of Triple Tensor Product of p-Groups
The non-abelian tensor product of groups which has its origins in algebraic K-theory as well as inhomotopy theory, was introduced by Brown and Loday in 1987. Group theoretical aspects of non-abelian tensor products have been studied extensively. In particular, some studies focused on the relationship between the exponent of a group and exponent of its tensor square. On the other hand, com...
متن کاملOn the Weight Distribution of the Extended Quadratic Residue Code of Prime 137
The Hamming weight enumerator function of the formally self-dual even, binary extended quadratic residue code of prime p = 8m + 1 is given by Gleason’s theorem for singly-even code. Using this theorem, the Hamming weight distribution of the extended quadratic residue is completely determined once the number of codewords of Hamming weight j Aj , for 0 ≤ j ≤ 2m, are known. The smallest prime for ...
متن کامل